

- 1. Force is...
 - A. How strong an object is
 - B. A push or a pull on an object
 - C. An object's mass multiplied by acceleration
 - D. b and c
- 2. Look at the Free Body Diagram below. Is this a balanced or unbalanced force? Why?
 - A. It's a balanced force, because the vertical force is balanced
 - B. It's a balanced force, because there's not enough force to move it
 - C. It's an unbalanced force, because there is a greater force pushing to the right than pushing to the left
 - D. It's an unbalanced force, because it's being pulled instead of pushed

- 3. In science, what is work?
 - A. The amount of time it takes to move an object
 - B. A net force on an object multiplied by the distance that object travels
 - C. A net force on an object multiplied by the object's mass
 - D. A net force on an object divided by the distance that object travels
- 4. Why do simple machines make work easier? Check all that apply
 - A. They output more force then they input
 - B. They decrease the amount of materials needed for work
 - C. They make the input force travel a shorter distance
 - D. They can redirect force in a useful way
- 5. Looking at these two inclined planes, moving the block up either will accomplish the same amount of work. Which will be easier work? Why?
 - A. X, because it's a shorter distance
 - B. X, because it will take less time
 - C.Y, because it is less work
 - D.Y, because it requires less input force

- 6. What is true about wedges?
 - A. The sharper the wedge, the less applied force it takes to accomplish work
 - B. A lever is really just a wedge
 - C. Inclined planes are really just wedges
 - D. The wider the wedge, the more work it can do
- 7. A lever consists of an arm, an applied force, a load, and a
 - A. claw
 - B. plank
 - C. weight
 - D. fulcrum

- 9. A class 1 lever has a fulcrum between the applied force and the load, so pushing down redirects the force to push the load up. Which of the following is a class 1 lever?
 - A. A fishing pole
 - B. A bottle opener
 - C. A see-saw
 - D. A nut cracker

- 10. You are building a seesaw. You want it so 9 acrobats can use it one person can stand on one end and hold the other 8 people up, who are stacked on top of each other. Where should the fulcrum be?
 - A. Point A
 - B. Point B
 - C. Point C

- 11. Look at this hockey stick, which is a class 3 lever. If D is the Arm, what is C?
 - 1. The load
 - 2. The applied force
 - 3. the fulcrum

- 12. How are screws related to inclined planes?
 - A. Screws are wedges, which are two inclined planes
 - B. Screws and inclined planes are both wedges
 - C. Screws are inclined planes wrapped around an axis
 - D. Screws are not related to inclined planes, they are related to levers
- 13. Which of the following is NOT true about wheels?
 - A. Wheels are closely related to levers
 - B. It's easier to turn a wheel the closer you get to its axis, or center
 - C. The inside of a wheel turns with less speed than the outside
 - D. The outside of a wheel requires less force to turn than the inside
- 14. Why would adding more pulleys make lifting a heavy block easier?
 - A. The weight of the block is more evenly distributed among the pulleys
 - B. It requires a longer rope or cord to pull
 - C. You can pull the rope or cord faster
 - D. You can pull the rope or cord farther